
LLNL-PROC-648476

FUDGE: A Toolkit for Nuclear
Data Management and
Processing

B. R. Beck, C. M. Mattoon

January 14, 2014

2014 ANS Annual Meeting
Reno, NV, United States
June 15, 2014 through June 19, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

FUDGE: A Toolkit for Nuclear Data Management and Processing

B. R. Beck and C. M. Mattoon

Lawrence Livermore National Laboratory, L-059, P.O. Box 800, Livermore, CA 94551
beck6@llnl.gov and mattoon1@llnl.gov

INTRODUCTION

For over 50 years the Evaluated Nuclear Data File

(ENDF) [1] format has been used for storing and sharing
evaluated nuclear reaction data. Processing codes like
NJOY [2] and AMPX [3] are used to transform ENDF
formatted data into forms useful for reactor, medical and
other transport codes. For example, NJOY can be used to
produce ACE files used by the transport code MCNP [4].
With all of its advantages, the ENDF format has
limitations as it was developed in the era of punchcards,
small (kilo-bytes) memory computers and limited storage
capacity that restricted its design. Furthermore, computer
software technology has made significant advances over
the last 50 years. To address ENDF’s limitations, an
international committee (OECD/NEA WPEC sub-group
38) [5] has been working since December 2012 to design
a modern format, tentatively called GND, to replace the
ENDF format.

To complement the new format, the nuclear data
group at Lawrence Livermore National Laboratory
(LLNL) is modifying its nuclear data management
infrastructure (called FUDGE) to support reading/writing,
plotting, manipulating and processing nuclear data stored
in the GND format. Over the next few years, FUDGE will
probably be the only infrastructure that is capable of
supporting the new format. FUDGE will allow the
conversion of data in the new format to the ENDF format
so that data in the new format can be processed by codes
that only support ENDF.

FUDGE is freely available and can be downloaded
from https://ndclx4.bnl.gov/gf/project/gnd/.

BRIEF HISTORY OF ENDL, FUDGE AND GND

While the rest of the world used the ENDF format for

storing nuclear reaction data, LLNL had its own format
called ENDL (Evaluated Nuclear Data Library) [6]. The
ENDL format was developed several years before ENDF
and has many of the limitations found in ENDF and a few
of its own. In addition, by sticking to the ENDL format,
LLNL has in many ways isolated itself from the rest of
the nuclear data community, requiring it to develop its
own data and processing codes.

Around 2001 LLNL started the development of a
user-friendly toolkit called FUDGE (For Updating Data
and Generating ENDL) to simplify the reading/writing,
plotting, modifying and processing ENDL data. The user

interface to FUDGE is a suite of Python modules.
Computationally intensive calculations are coded in lower
level languages like C and C++; however, users do not
need to interact with these codes as Python wrappers are
provided. Python was chosen since it is object oriented
and has a large set of external modules (e.g., Gnuplot and
matplotlib for plotting data).

Around 2001 LLNL also started developing a code
dubbed FETE (From ENDF To ENDL) [7] to translate
ENDF data into ENDL data. While this project achieved
its goal, it was realized that the ENDL format had too
many limitations to handle all data coming from ENDF
with full fidelity. Hence, a search for a better format was
started around 2005. With limitation also discovered in
the ENDF format, LLNL decided to develop a new
nuclear data format called GND (Generalized Nuclear
Data) [8] and to modify its FUDGE toolkit to support it.

FUDGE TOOLKIT

Most Python modules in the FUDGE toolkit (herein

called FUDGE) contain classes for a particular type of
data. For example, the crossSection.py module contains
classes for various representations for cross section data
(e.g., pointwise (ENDF MF 3), resonance with
background (ENDF MF 2 and 3)). The following sections
outline the major parts of FUDGE.

Reading/Writing Data

As FUDGE was originally written for the ENDL

format, it still maintains the classes and their methods for
ENDL formatted data including reading and writing.
FUDGE now also supports reading and writing of a
GND/XMLa file.

Data in most (see end of section) of the ENDF
formatted files can be converted to GND and written out
as a GND/XML file with the following Python codingb:

>>> from fudge.legacy.converting import \

endfFileToGND as E2GND
>>> rce = E2GND.endfFileToGND(‘n-92_U_239.endf’)
>>> reactionSuite = rce[‘reactionSuite’]
>>> reactionSuite.saveToFile(‘n-92_U_239.GND’)

where the ENDF file to translate is named ‘n-
92_U_239.endf'. The function E2GND.endfFileToGND
returns a dictionary containing 3 objects. One object with
key "reactionSuite" contains the data in the ENDF file,

except for the covariance data, as an instance of a
FUDGE 'reactionSuite' class. A 'reactionSuite' contains a
list of reactions for a projectile hitting a target as well as
other data (i.e., most of the data in an ENDF material).
Another object with key "covarianceSuite" contains the
covariance data. And the last object with key "errors"
contains a list of errors in the ENDF file discovered by
the parser.

In addition to translating an ENDF formatted file to
GND, FUDGE supports the translation of a GND
evaluation to an ENDF formatted file. This is important
since it will be several years before WPEC sub-group 38
completes the design of GND and several more years
before many of the processing codes will support GND.
For the above example, this would be

>>> fOut = open('92_U_239.endf.2’, 'w')
>>> fOut.write(reactionSuite.toENDF6(...))
>>> fOut.close()

where, for brevity, the arguments to the method
'toENDF6' are not shown.

For ENDF-VII.1, FUDGE can translate the following
libraries (with exception of a few charged-particle files
that have data issues):

neutrons/ protons/ deuterons/
tritons/ helium3s/ gammas/
standards/

Translators for the following libraries exist but have not
been integrated into FUDGE yet:

nfy/ sfy/ thermal_scatt/

While translation of the following libraries is still needed:

decay/ electrons/ photoat/
atomic_relax/

Data Representations and Plotting

FUDGE (and GND) supports all the data

representation of the ENDL and ENDF formats. In ENDL
the data representations are all pointwise forms (e.g., a
cross section, σ(E), is a list of (Ei, σi) pairs). In addition to
pointwise forms, ENDF supports some functional forms
for the data (e.g., N-Body Phase-Space Distributions
(ENDF MF 6 LAW 6)).

All pointwise data classes in FUDGE have a 'plot'
method. Using the ‘n + 239U’ evaluation from the
ENDF/B-VII.1 library [9] for the example above and
reconstructing the cross section from resonance parameter
data, the FUDGE coding for plotting the elastic cross
section is:

>>> reactionSuite.reconstructResonances()
>>> elastic = reactionSuite.getReaction('elastic')
>>> crossSection = elastic. crossSection
>>> XSec = crossSection.toPointwise_withLinearXYs()
>>> XSec.plot()

The plot is shown in Figure. 1. In addition to a plot, a
dialog window (not shown) allows one to change plot
parameter such as axis limits and labels.













       











Fig. 1. Plot of the elastic cross section for ‘n + 239U’ from
ENDF/B-VII.1.

All data classes in FUDGE have a method called

''toPointwise_withLinearXYs'' that converts the data to a
"linear" pointwise representation, allowing for plotting of
functional data forms. For example, a fission neutron
distribution represented with the 'WattSpectrum' class
(ENDF MF 5 LF 11) can be plotted by first converting it
to a pointwise representation.

Modifying Data

One of the original goals for FUDGE was to simplify

the modifying and processing of ENDL data so that
sensitivity studies can be easily be performed. Many of
FUDGE data classes contain methods for simplifying the
modification of data. For example, the 1-d (i.e., any
function of the form y(x) like σ(E)) pointwise data class
dubbed XYs has methods for the operators '+', '-', '*' and
'/'. These operators support the second operand being a
number or another XYs instance (e.g., if 'a' is an XYs
instance, 'c = a + b' is supported when 'b' is a number or
another XYs instance). Since ENDF data are usually not
on a common energy-grid (i.e., x-grid for the XYs class),
these operators first create a common x-grid from the two
operands and then interpolate their y-values. This allows,
as example, for the addition of two pointwise ENDF cross
sections.

For example, if the uncertainty as a function of
energy for the cross section for the fission reaction for ‘n
+ 239U’ is known, what is the keff uncertainty for a critical
assembly? One solution is to have a transport code that

propagates uncertainties. Another solution, and the one
FUDGE was designed for, is to sample ‘realization’s of
the data. That is, use Monte Carlo to sample from a data’s
uncertainty and add this to the data (one realization or
possible curve given the data and its uncertainty). As
example, if ‘unc’ is a Python variable containing the
energy-dependent fractional uncertainty for the ‘XSec’
data in the prior example, with energy dependence of
(first column is energy in eV and the second column is 1-
sigma fractional energy uncertainty):

1.e-5 0.10
100. 0.10
1.e6 0.05
3.e7 0.10

then the FUDGE code:

>>> XSecMod = XSec * (1 + unc)
>>> multiPlot([XSec, XSecMod])

will produce an energy dependent cross section that is 1-
sigma above ‘XSec’ as show in Fig. 2. The plot was
generated by the multiPlot function. In this example, the
multiplier for sampling of the uncertainty is 1. In general,
any sampled value is allowed (e.g., (1 + random * unc))
and, like 'unc', it can be energy dependent.















     












Fig. 2. Plot of the elastic cross section in Fig. 1 (red
curve) and the modified cross section (green curve).

Checking Data

Some data issues can only be discovered by

comparing transport code results to experiments.
However, some issues do not require comparison to
experiment to discover. This section discusses the
FUDGE checking designed to uncover these latter issues.

For portability and sharing of data as well as other
reasons, WPEC sub-group 38 has decided that the default
storage for GND will be in XML. For ENDF formatted
files, the code ‘CHECKR’ [10] is used to verify that an
ENDF file in properly formattedc. For GND/XML files,

FUDGE contains an XML schema file [11] that, along
with a validation code (e.g., xmllint on a Unix system),
checks a GND/XML file for formatting issues.

In addition to checking for format errors, tools to
help ensure that a file contains physically realistic data are
also needed. For ENDF files, this physics checking has
been performed by the combination of two codes,
FIZCON and PSYCHE [10]. Together, they check for
problems such as unnormalized probability distributions,
negative cross sections or multiplicities, non-conservation
of energy, incomplete quantities (not covering the full
incident energy span required for an evaluation), and so
on. Errors uncovered by FIZCON and PSYCHE are
reported along with the section (identified by MF and MT
numbers) where they occur.

Physics checking is also integrated into the FUDGE
implementation of GND. In this case, physics checking is
implemented with ‘check’ methods that are defined in the
Python classes. When the 'check' method for a
reactionSuite is called, the 'check' method first
reconstructs resonances, calculates average outgoing
energy for each product, and then proceeds to call the
'check' method of each reaction within the reactionSuite.
The 'check' method for a reaction checks its cross section
and its list of outgoing products including their
distributions and multiplicities. Last, each reaction is
checked for energy balance. That is, whether the sum of
the average kinetic energies to the products is equal to the
available energy (Q-value plus kinetic energy of the
projectile) for the reaction.

Using FUDGE to check GND/XML formatted files
requires only three lines of Python code, as:

>>> from fudge.gnd import reactionSuite
>>> RS = reactionSuite.readXML("gnd_file.xml")
>>> print RS.check()

Processing Data

The word "processing" nuclear data has a broad

meaning that basically means any transformation of the
data. Examples include: reconstructing (see example in
Data Representations and Plotting) and Doppler
broadening cross sections as well as grouping data for
deterministic transport. Processing also includes the
conversion of GND to other formats (e.g., the ACE
format used by the Monte Carlo transport code MCNP -
the methods to convert GND to ACE are currently being
developed).

FUDGE currently supports most of the processing
required to generate nuclear data needed by transport
codes, including: reconstructing and Doppler broadening
cross sections, calculating average energy for each of the
outgoing particle and grouping data for deterministic
transport. For deterministic processing, FUDGE is able to

process the entire neutron ENDF/B-VII.1 library with the
exception of one reaction. The minimum goal for FUDGE
is to support all of the processing currently done by NJOY
and AMPX.

Testing Fudge Processing

Rigorous testing of the reconstructed and Doppler
broadened cross sections have been performed including
comparisons to results from NJOY, RECENT [12] and
SIGMA1 [12]. Any issues found (in FUDGE or the other
codes) have been fixed and all now agree as expected.

The deterministic data calculated by FUDGE are
being compared to those calculated by NJOY and AMPX.
Many of the current issues are in the data, not the
processing codes. For example, ENDF stores some data
redundantly (like masses and spins) and these values often
differ. Hence, the result of a calculation depends on which
value is used. The testing has uncovers bugs in NJOY and
AMPX, and all bugs are reported to the respective code
team.

ENDNOTES

aGND is not an actual format but an outline (or structure)
of how data are to be represented. FUDGE also contains a
python script that translates a GND/XML file into a
binary GND/HDF5 [13] file.

bPython examples are for Python version 2.7.

cSome people question whether a new format - or
processing toolkit - is needed. However it is worth noting
that during the development of the FUDGE translation of
ENDF to GND, many bugs were found in the ENDF/B-
VII.0 library that were either not uncovered by the ENDF
checking codes or were being ignored by the evaluators,
but are somehow handled, correctly or not, by the ENDF
processing codes. In fact, around 1/4 of the materials in
the ENDF/B-VII.0 evaluation cannot be translated by
FUDGE since it adheres to the ENDF-6 format
documentation [1]. All but about 5 of these issues were
reported and fixed before the release of ENDF/B-VII.1.
While fewer, other bugs with the data are being
uncovered as a result of the testing of FUDGE's
processing. Many of these bugs are a result of the ENDF
format which stores data redundantly and which the
ENDF checker codes are not catching when a discrepancy
exists. In part, GND avoids this trap by only storing each
datum once.

REFERENCES

1. A. TRKOV, M. HERMAN and D. BROWN (eds.),
"ENDF-6 Formats Manual: Data Formats and Procedures
for the Evaluated Nuclear Data Files ENDF/B-VI and

ENDF/B-VII'', BNL-90365-2009 Rev.2, CSEWG
Document ENDF-102 (2012). (see
http://www.nndc.bnl.gov/csewg/docs/endf-manual.pdf).
2. R.E. MACFARLANEF, A.C. KAHLER, "Methods for
Processing ENDF/B-VII with NJOY", Nuclear Data
Sheets, 111, 12, 2739 (2010)
(see http://t2.lanl.gov/codes/njoy99/).
3. M. E. DUNN and N. M. GREENE, “AMPX-2000: A
Cross-Section Processing System for Generating Nuclear
Data for Criticality Safety Applications”, Trans. Am.
Nucl. Soc. 86, 118-119 (2002).
4. For information on MCNP see https://mcnp.lanl.gov/.
5. https://www.oecd-nea.org/science/wpec/sg38/
6. B. BECK, et al., "ASCII Format Specifications for the
Evaluated Nuclear Data Libraries (ENDL)", UCRL-TM-
218475 (2006).
7. D. A, BROWN, et al., "User's Guide to Fete: From
ENDF To ENDL", UCRL-SM-218496 (2006).
8. C.M. MATTOON, et al., "Generalized Nuclear Data:
A New Structure (with Supporting Infrastructure) for
Handling Nuclear Data", Nuclear Data Sheets, 113, 3145-
3171 (2012).
9. M.B. CHADWICK, et al., "ENDF/B-VII.1: Nuclear
Data for Nuclear Science and Technology: Cross
Sections, Covariances, Fission Product Yields and Decay
Data", Nuclear Data Sheets, 112, 2887 (2011).
10. C.L. DUNFORD, ENDF Utility Codes Release
7.01/02, Released April 2005.
11. C.E. CAMPBELL, et al., "XML Schema'', ACM
SIGMOD Record 32 2 (2003).
12. D. CULLEN, "PREPRO 2010: 2010 ENDF/B Pre-
Processing Codes'', IAEA Report IAEA-NDS-39, Rev. 14
(2010).
13. The HDF Group. Hierarchical Data Format version 5,
2000-2010, http://www.hdfgroup.org/HDF5.

Acknowledgement: This work was performed under the
auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-
AC52-07NA27344.

